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Automatically learning and grouping key motion patterns in a traffic scene captured by a static camera
is a fundamental and challenging task for intelligent video surveillance. To learn motion patterns,
trajectory obtained by object tracking is parameterized, and scene image is spatially and evenly divided
into multiple regular cell blocks which potentially contain several primary motion patterns. Then, for
each block, Gaussian Mixture Model (GMM) is adopted to learn its motion patterns based on the
parameters of trajectories. Grouping motion pattern can be done by clustering blocks indirectly, and
each cluster of blocks corresponds to a certain motion pattern. For one particular block, each of its
motion pattern (Gaussian component) can be viewed as an instance, and all motion patterns (Gaussian
components) constitute a bag which can correspond to multiple semantic clusters. Therefore, blocks
can be grouped as a Multi-instance Multi-cluster Learning (MIMCL) problem, and a novel Maximum
Margin Multi-instance Multi-cluster Learning (ML) algorithm is proposed. To avoid processing a
difficult optimization problem, ML is further relaxed and solved by making use of a combination of the
Cutting Plane method and Constrained Concave-Convex Procedure (CCCP). Extensive experiments are
conducted on multiple real world video sequences containing various patterns and the results validate

the effectiveness of our proposed approach.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Video scene understanding by unsupervised inference of motion
patterns in static camera scenes is a very important task in visual
surveillance. With the increasing of the surveillance systems, large
amounts of video data are created every day, and it is difficult and
time-consuming to label and organize these videos manually.
Therefore, various methods have been made to understand the
videos automatically [1-3]. By clustering the motion patterns, we
can obtain information along which path or direction the vehicles or
pedestrians should move or walk. Based on such information, it is
very convenient to detect abnormal activities and meet the great
needs for traffic management systems. However, the motion of
pedestrians and vehicles is complex and their motion patterns are
different from each other. Thus, automatically clustering the motion
patterns for video understanding is a challenging problem in
computer vision and pattern recognition.
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The standard approach for analysis of video sequences involves
four primary parts: (1) moving object detection; (2) object classifi-
cation; (3) motion pattern learning and clustering and (4) activity
analysis. There is a lot of progress made in each of the modules. For
moving object detection, the Gaussian Mixture Model (GMM) [1] is
frequently adopted to model background. For classification of
objects into different categories (e.g. a vehicle, a person), scene
context features (such as position, area in pixels, and velocity) [4]
are used to cluster trajectories into different types (vehicles vs.
pedestrians), and show effective performance by experimental
results. However, due to low resolution, shadow, and different
viewing angles, object classification only using these features is
not enough in video surveillance. Therefore, a co-training based
method [5] is proposed to train classifiers with multiple different
kinds of features. For motion pattern learning and clustering, the
most commonly used features are low level motion and appearance
features [6-8]. Examples of such features include sparse or dense
optical flows [9], spatiotemporal gradients [10], and object trajec-
tories obtained after detection and tracking [11,5,3]. Based on
different descriptions, various learning and clustering methods are
adopted [12-14]. For activity analysis, existing approaches [1,4,5]
use clustered motion patterns to recognize the abnormal activities
of objects in video sequences.
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Fig. 1. Multiple primary motion patterns may exist in a certain block as shown in
the red rectangle. Here, each trajectory represents a motion pattern. (For inter-
pretation of the references to color in this figure caption, the reader is referred to
the web version of this Article.)

In this work, we mainly focus on the third part about motion
pattern learning and clustering, i.e., how to learn the motion
pattern and design a suitable clustering algorithm. As shown in
Fig. 1, object trajectory can be obtained by tracking algorithm [1],
and each trajectory is a potential motion pattern in the scene
image. Distribution of trajectories in a certain region can be
viewed as a Gaussian distribution from the statistic point of view.
The scene image can be divided into multiple cell blocks, and each
block may have multiple distributions (multiple clusters of
trajectories). Therefore, the Gaussian Mixture Model (GMM) is
adopted to learn spatial distributions of trajectories in each block,
and each Gaussian component is one of the underlying motion
pattern. Then, how to cluster the motion patterns of all blocks in
the scene image? Since each cluster of blocks is corresponding to
a certain motion pattern, grouping motion patterns can be done
by clustering blocks indirectly. For each block, each motion
pattern (Gaussian component) can be viewed as an instance,
and all motion patterns (Gaussian components or instances)
constitute a bag which may contain multiple semantic clusters
simultaneously. In this way, each block (bag) is associated with
not only multiple instances but also multiple clusters. Therefore,
we formulate the blocks grouping task as a Multi-instance Multi-
cluster Learning (MIMCL) problem. There is little work directly
dealing with this problem. Most of the existing clustering
methods [15-18] are designed to solve traditional Single-
instance Single-cluster Learning (SISCL) problems, and some
methods [19,20] only consider a bag including one semantic
cluster and deal with Multi-instance Single-cluster Learning
(MISCL) problems. In many real-word cases, such as block
clustering, a bag (block) may belong to more than one clusters.
Therefore, it is unreasonable to adopt SISCL or MISCL formulation
and assign a bag to only one cluster.

Considering the MIMCL formulation and the maximum margin
clustering criterion [18,20,21], we propose a novel algorithm
named ML, i.e. Maximum Margin Multi-instance Multi-cluster
learning, to cluster motion patterns for video scene modeling.
Briefly, M*L assumes a linear model for each cluster, where the
output of a bag on one cluster is set to be the maximum
prediction scores of all the instances. Subsequently, the outputs
on all possible clusters for all instances of a bag are adopted to
define the margin. That is, for a certain cluster, the corresponding
margin of a bag is defined by using the output of the most
discriminative instance, and the margin of the bag with respect to
the clustering system is set to be the minimum margin of the bag
over all possible clusters. Obviously, each instance is adopted to

determine the output on each possible cluster and the correla-
tions between different clusters are also considered in the
combination phase. Therefore, the connections between the
instances and the clusters are explicitly exploited by M*L. Com-
pared with the existing approaches, the contributions of our work
can be summarized as follows.

1. We formulate motion pattern clustering in video surveillance
as a Multi-instance Multi-cluster Learning (MIMCL) problem,
which provides a new perspective and is very suitable to group
motion patterns.

2. To group motion patterns efficiently, we propose a novel
clustering algorithm denoted as M®L: Maximum Margin
Multi-instance Multi-cluster Learning, which adopts the the-
ory of support vector machine and aims at finding the max-
imum margin hyperplane to separate the data from different
classes.

3. To solve the nonconvex M“L algorithm, we make use of
combination of Constrained Concave-Convex Procedure
(CCCP) and the Cutting Plane method for efficient optimization
solution.

The rest of the paper is organized as follows. In Section 2, we
introduce some related work to this paper. The proposed
approach is described in details in Section 3 including motion
pattern learning and motion pattern clustering. Experimental
results are reported and analyzed in Section 4. Finally, we
conclude the paper with future work in Section 5.

2. Related work

The problem of scene modeling in visual surveillance is not
new [4,1,2,5,22,14,23-25]. In general, the task is to lay out the
structure of traffic scenes (e.g., roads, sidewalks, intersections), or
learn motion patterns (e.g., pedestrian crossings, vehicles turn-
ing). The proposed work is an attempt to learn and cluster motion
patterns from static camera videos without any user intervention.
The most related work to our method is scene understanding in
visual surveillance, and clustering relevant methods. We review
the state-of-the-arts of these two topics, respectively.

2.1. Video scene understanding

In video surveillance, many methods attempt to learn motion
patterns for video scene understanding. Stauffer and Grimson [1]
use a real-time tracking algorithm in order to learn patterns of
motion (or activity) from the obtained tracks. Due to the use of
co-occurrence matrix from a finite vocabulary, these approaches
are independent from the trajectory length. However, the voca-
bulary size is limited for effective clustering and time ordering is
sometimes neglected. Hu et al. [2] generate trajectories using
fuzzy k-means algorithms for detecting foreground pixels. Tra-
jectories are then clustered hierarchically and each motion
pattern is represented with a chain of Gaussian distributions.
However, the number of clusters must be given manually and the
data must be of equal length, which weakens the dynamic aspect.
Wang et al. [4] propose a trajectory similarity measure to cluster
the trajectories and then learn the scene model from trajectory
clusters. Basharat et al. [26] learn patterns of motion as well as
patterns of object motion and size. These approaches [4,26] are
adapted to real-time applications and time-varying scenes
because the number of clusters is not specified and they are
updated over time. However, it is difficult to select a criterion for
new cluster initialization that prevents the inclusion of outliers
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and insures optimality. Zhang et al. [5] model pedestrians’ and
vehicles’ trajectories as graph nodes and apply a graph-cut
algorithm to group the motion patterns together. The drawback
is the quality of the clusters which is dependent on the decision of
how to split (merge) a set that is not generally reflected along the
tree. Gryn et al. [27] introduce the direction map as a representa-
tion that captures the spatiotemporal distribution of motion
direction across regions of interest in space and time. However,
the direction map is able to capture only a single major orienta-
tion or motion modality at each spatial location of the scene. Yang
et al. [8] propose a novel unsupervised approach for video scene
understanding. They first quantize low-level features into words,
then screen out useful words for motion pattern detection.
Moreover, they use diffusion maps framework to detect motion
patterns at different scales. Based on clustering of clips, they can
also identify dominant motion patterns occurring in each clip
cluster. Imran et al. [14] adopt a mixture model representation of
salient patterns of optical flow, and present an algorithm for
learning these patterns from dense optical flow in a hierarchical,
unsupervised fashion. In addition, their representation avoids any
quantization and loss of information in the feature space.

In this paper, we also attempt to learn motion patterns by
trajectory analysis for video scene understanding. Different from
many existing methods, our algorithm groups trajectories indir-
ectly by clustering blocks first. Moreover, we formulate motion
pattern clustering as a Multi-instance Multi-cluster Learning
problem, which provides a new perspective for video scene
understanding and is very suitable to group motion patterns.

2.2. C(lustering relevant methods

Clustering [28,29] is one of the most fundamental research
topics in both data mining and machine learning communities. It
aims at dividing data into groups of similar objects, i.e. clusters.
Many clustering methods have been proposed in the literature for
last ten years, including k-means clustering [15], mixture models
[15], spectral clustering [16,17], maximum margin clustering [18],
and maximum margin multiple instance clustering (M?IC) [20].
For video scene understanding, we propose a maximum margin
multi-instance multi-cluster learning (ML) method, which is
closely related to the learning frameworks of multi-instance
learning [30], multi-label learning [31,32], maximum margin
clustering [18], maximum margin multiple instance clustering
(M3IC) [20], maximum margin method for multi-instance multi-
label learning (M>MIML) [33] and traditional supervised learning.

Multi-instance learning [30], or multi-instance single-label
learning (MISL), was proposed for investigation of drug activity
prediction problem. The task of MISL is to learn a function from a
set of MISL training examples, where a bag contains multiple
instances and has a label, and instance has no label. After the
seminal work of Dietterich et al. [30], numerous MISL learning
algorithms have been proposed [34,35] and successfully applied
to many applications especially in image categorization and
retrieval [36,37]. More works on MISL can be found in [38].

Multi-label learning [31,32], or single-instance multi-label
learning (SIML), originated from the investigation of text categor-
ization problems. The task of SIML is to learn a function from a set
of SIML training examples, where a bag is an instance, and has

multiple labels. A number of SIML learning algorithms have been
proposed by exploiting the relationships between different labels
[39,40]. SIML techniques have been successfully applied to
applications including text and image categorization [31,41].
More works on SIML can be found in [42].

Multi-instance multi-label learning (MIML) [43-45,33] is a
newly proposed framework, where each example in the training
set is associated with multiple instances as well as multiple
labels. Many real-world problems involving ambiguous objects
can be properly formalized under MIML. For instance, in image
classification, an image generally contains several naturally parti-
tioned patches, and each can be represented as an instance, while
such an image can correspond to multiple semantic classes
simultaneously, such as clouds, grassland and lions.

Xu et al. [18] proposed maximum margin clustering (MMC),
which borrows the idea from the support vector machine theory
and aims at finding the maximum margin hyperplane which can
separate the data from different classes in an unsupervised way.
Their experimental results showed that the MMC technique often
obtains more accurate results than the conventional clustering
methods. Therefore, considering the MISL, SIML, MIML, and
maximum margin criterion, many clustering methods are pro-
posed, such as, maximum margin multiple instance clustering
(M3IC) [20], maximum margin method for multi-instance multi-
label learning (M3MIML) [33].

According to the above definitions, it is clear that the tradi-
tional supervised learning (SISL) can be regarded as a degenerated
version of either MISL or SIML. Furthermore, SISL, MISL and SIML
are all degenerated versions of MIML. Our multi-instance multi-
cluster learning (MIMCL) problem is different from multi-instance
multi-label learning (MIML). The MIMCL is for clustering, and we
do not know the label information. However, The MIML is for
classification, and we know the label information used to learn
model. Moreover, our maximum margin multi-instance multi-
cluster Learning (ML) is different from maximum margin multi-
ple instance clustering (M3IC) [20] and maximum margin method
for multi-instance multi-label learning (M>MIML) [33]. That is
because the M3IC is a Multi-instance Single-cluster Learning
(MISCL) method, and M®>MIML is a supervised learning method
for classification.

3. Our scene modeling algorithm

Scene modeling in video surveillance is to learn and cluster
motion patterns which are the moving paths and directions of
objects, from observing the behavior of moving objects. The flow-
chart of our method is shown in Fig. 2. Given input video, after
object detection and tracking, we adopt our scene modeling algo-
rithm, and output semantic scene models. For video scene modeling,
we take two steps. For the first step, trajectories obtained by object
tracking are described in a parametric way (Section 3.1.1) and scene
image is cut into multiple blocks. Each block is viewed as the
distributions of trajectories (trajectories’ parameters and moving
directions of objects). Trajectory distribution in a block can be
viewed as a Gaussian distribution from statistic point of view.
Because each block may have multiple distributions, the Gaussian
Mixture Model (GMM) is adopted to describe spatial distributions of

Fig. 2. The flowchart of our proposed scene modeling method.
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trajectories for each block (Section 3.1.2). Each of the Gaussian
components is one of the underlying motion patterns. For the
second step, we cluster the blocks to group the motion patterns
indirectly. We formulate the block grouping task as a Multi-instance
Multi-cluster Learning (MIMCL) problem, where each block is
associated with not only multiple instances (motion patterns) but
also multiple clusters. Then, we propose a Maximum Margin Multi-
instance Multi-cluster Learning method to cluster blocks to obtain
their corresponding semantic regions.

Based on the semantic regions and their corresponding motion
patterns, trajectories are further clustered. For each cluster of
trajectories, primary trajectories are learnt by Mean-Shift algo-
rithm [46]. As a result, video scene modeling are learnt. Next, we
will introduce how to learn motion patterns for each block in
Section 3.1, and show the detail about how to cluster the motion
patterns in Section 3.2.

3.1. Motion pattern learning

3.1.1. Trajectory description

We implement real-time background subtraction and tracking
as [1], so that moving objects can be reasonably separated from
background and tracked over time. For each object, the corre-
sponding trajectory is obtained as shown in Fig. 3. In the 2-D
image coordinates, whose origin is on the bottom left corner, a
trajectory can be described as T = {(x1,¥1),(X2,¥5), - - -,(Xn,¥)}. In
general traffic scenes, trajectory of a vehicle is not complicated,
for simplicity, we use quadratic curve (y=a x x>+b x x+c) to
describe the trajectory. For a tracked object, all points from start
point to end point are collected to calculate the parameters (a, b,
c) by least squares fit to the y values. Moving direction of object
(v) is quantized into four directions as in Fig. 1. The parameters
(a, b, ¢, v) are features of a trajectory.

Noisy points have a bad effect on the least squares algorithm to
learn the parameters (g, b, c). Therefore, we have to preprocess each
trajectory to delete these points. For a trajectory T ={(x1,y1),
(X2,¥2), - - -,(Xn,y)}, distance between near points is defined as
di=IIx; . 1—x;l+1ly;, 1—y;ll, and change of distance Ad; is
ldiy1—dill. The mean u and the standard deviation o6 of
{Ad;,i=1,2,...,n—2} can be obtained. If II(Ad;—u)/dll > 2.5, the
three points (x;,y;),(Xi11,Y;,1) and (X;,2,y; ) are considered to be
unstable and deleted; otherwise, these points are saved and used to
calculate the parameters. Instead of saving all points of a trajectory,
the parametric way reduces storage space. In addition, it is con-
venient to extract motion patterns. Some results of trajectory
description in a parametric way are showed in Fig. 3. Based on this
description, blocks which one object has passed will be set to the
same parameters (a, b, ¢, v) based on the object’s trajectory. As a
result, this description reflects the spatial distribution of trajectory.
Finally, we can adopt the trajectory parameters to group the blocks
with similar motion patterns.

3.1.2. Learning motion patterns by GMM algorithm

There are lots of motion patterns in traffic scenarios. These
motion patterns can be obtained for each pixel in the scene image,
but it is time and storage consuming. Since adjacent pixels in
scene image have similar motion patterns, it is feasible to cut the
scene image into R x C relatively small blocks as shown in Fig. 1
and learn these motion patterns based on each block.

Objects can be classified into vehicles or pedestrians, and there
are two types of trajectories. One belongs to vehicles, and the other
belongs to pedestrians. For each type of trajectory, the motion
patterns of each block can be viewed as Gaussian distributions from
statistic point of view. Because each block may contain many
motion patterns, we adopt the multiple Gaussian models to repre-
sent them. There are four advantages to learn motion patterns by
the GMM algorithm: (1) Multiple Gaussian models are enough to
describe each block which may contain many various motion
patterns. This is because the number of traffic rules is limited,
which causes the number of motion patterns in each small block to
be limited. (2) Outlier trajectories can be removed by updating the
weight of Gaussian model, hence primary motion patterns can be
learnt from long-term observations. (3) The weight of Gaussian
model can be viewed as the importance of its corresponding motion
pattern, hence the number of important activities will be known.
(4) The computational cost is low.

Our algorithm can be described as follows. For each type of
trajectory, each block in the scene is modeled by a mixture of
K Gaussian distributions for trajectory parameters. For a certain
block, the series of trajectories {T; :(at,bt,c[,ut)}f:] which have
passed the block are obtained. Here (a;, b, ¢;, v;) are parameters
of a trajectory T, and are used to learn the parameter distribution
of the block. The probability that the block has a value of T; at
time t can be written as

K
P(Ty) = Z Wie < Q(Te, Ui, 25p), (1)
i=1
where w; is the weight parameter of the ith Gaussian component
at time ¢, §(T¢,u;¢,2;) is the ith Normal distribution of component
with mean u;, and covariance X;,. Here X;; is assumed to be
diagonal matrix. Although this is certainly not the case, the
assumption allows us to avoid a costly matrix inversion at the
expense of some accuracy.

Ui = (uﬁt,uﬁt,uE[)T @

Ojt= (Ugt-(ff{t'”z‘c,t)T )
o8, 0 0

b 3?2 =0 o O 4
0 0 of

it

Fig. 3. Examples of trajectory fitting. The white arrows are the moving directions of objects. (b) and (d) are the trajectory fitting results corresponding to two trajectories

(a) and (c), respectively.
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The K distributions are ordered based on the fitness value w;,.
Parameters u and ¢ for unmatched distributions remain the same.
The first Gaussian component that matches the test trajectory will
be updated by the following update equations:

Wi = (1—-0)Wj 1 +a(Mir) )
Ui = (A=p)jr1+pTe (6)
0% = (A=p)oi sy +p(Te=ti) (Te—yy) (7)
p =on(Te|uir,0ip), 8

where M;, is 1 for the model which matched and O for the
remaining models, 1/o defines the time constant which deter-
mines change. If none of the K distributions matches the trajec-
tory, the component with the minimum weight is replaced by a
distribution with the current value (at, by, c;) as its mean, the v, as
its moving direction, an initially high variance, and a low weight
parameter. In our experiments, the number of primary motion
pattern of a small block is no more than 3 in the traffic scene,
therefore, K is manually set to be 3 for simplicity. For our method,
this parameter is not critical to decide the number of motion
patterns in each block. This is because we have the weight (w;;)
for each Gaussian component (motion pattern), which can help us
decide the importance of each motion pattern and the number of
motion patterns in each block. o is manually set to be 0.1, the
initial high variance of (q, b, c) are (0.05, 0.2, 20), the low weight is
0.05. When we learn motion patterns for each block, we do not
update the v, based on the GMM algorithm for each motion
pattern. We adopt a simple way to obtain the motion direction for
each motion pattern by counting the four possible directions.

To improve the motion pattern learning, outlier trajectories must
be removed. Usually these are noisy trajectories caused by tracking
or classification errors, anomalous trajectories, e.g., a car drives out
of the way, or some pedestrians roaming between different paths. In
visual surveillance, these may be of particular interest, and as
expected our algorithm can detect them. For a scene, the GMM
algorithm is adopted to learn motion patterns for a long time. If a
trajectory’s parameters are similar with the motion patterns of
blocks which the object has passed, and the motion patterns have
a high weight, the trajectory is received to update the GMM model.
Otherwise, the trajectory is viewed as a noisy trajectory and deleted.

After the motion pattern learning, each block has K Gaussian
distributions, and each of the Gaussian components is one of the
underlying motion patterns. For a scene, all motion patterns (G)
learnt by GMM algorithm are collected into G = {g |1 =
1,2,....Rj=12,....Ck=1,...

the k th motion pattern of the block (i,

k pk ok kT
K}, where gij_(au,bu,cy,vu) is

j)- In a block, each

Gaussian component (g i _(a{j,bfj,cf;,vk) )Jis viewed as an
instance, and all Gaussian components are composed of a bag.
Next, we introduce how to use the proposed ML algorithm to

cluster the blocks to group motion patterns.
3.2. Motion pattern clustering

3.2.1. Problem description

Up to now, the problem is how to cluster motion patterns. In a
scene image, some blocks may contain multiple different motion
patterns, and our aim is to cluster the blocks which have a certain
motion pattern. After motion learning as introduced in Section
3.1.2, each block generally contains several primary motion

patterns, and each pattern can be viewed as an instance. All
motion patterns (instances) of a block are constituted of a bag. For
the bag, it may belong to multiple semantic clusters simulta-
neously. Then, the motion pattern clustering problem is trans-
formed into grouping blocks, which is a standard MIMCL problem.

For mathematical description, suppose we are given a set of n
bags, {Bi,izl 2,...,n}, where n=R x C is the number of blocks,

andB_{g

=1,...,K} contains the K motion patterns of the

block (i,j). The instances (motion patterns) in the bag B; are
denoted as B; = {B;,Bj, ...,Bin,}, where n; is the total number of
instances in this bag and is equal to K. Our goal is to group these
given bags (blocks) into k clusters, such that the semantic
concepts in different clusters can be distinct from each other
and each bag may be contained in multiple clusters.

3.2.2. Formulation

Given a sample (B;; ©;), let Q; denote all possible clusters for B;.
For each cluster p e {1,2, ...k}, we define a weight vector w,. M*L
assumes that the p-th cluster belongs to €; if one instance By in
bag B; has the maximum prediction with respect to w,. That is

Q= {pp_argmax w, B,])BUeB} 9)
pe(l1,2,..k

The Q; denotes that the bag B; may belong to multiple clusters.
We can define the bag margin of a bag B; on the p-th cluster
(pe ;) as

BM, = max (W} Bjj—w}.Byj) (10
where, p* = arg maxq p(wgB,-j). Throughout this paper, “\” means
ruling out. Therefore, this definition can also be written as:
p*=arg maxq#p(wgB,-j). It is obvious that BM, is determined by
the most “discriminative” instance for cluster p. Then, the margin
of the bag B; with respect to the clustering system is set to be the
minimum margin of (B;; Q;) over all possible clusters

111‘2151;}52&8)1( (W Bz] ij) )]

Compared with the maximum margin multiple instance
clustering (M>3IC) [20] method, we can see the definitions of bag
margin are different. In [20], the authors adopt Eq. (10) as the bag
margin, which just describes one possible cluster. However, for
our problem, the bag margin is defined as Eq. (11), which
represent the margin over all possible clusters.

In addition, as shown in [18,20], it is necessary to add a
constraint to keep the cluster balance, which can avoid a trivially
optimal solution by assigning all patterns to the same class. In
this case, the resultant margin will be infinite. Moreover, it can
also separate a single outlier or a very small group of samples
from the rest of the data. Therefore, we consider the following
equation to alleviate such trivial solutions.

_1<ZZ wy Bjj— ZZ weB; <1 (12)

i=1jeB; i=1jeB;

Considering these issues, M“L can then be formulated as

k
min % > Iwpl* + Z &
p=1

171
st. i=1,...,n,

Q= {pp_ argmax (w By, B,]eB}
pe(]Z

minmax (w,B;—w,
peQijeB;

vp,qe{1,2,...,k}

ij)21*§i
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WlB;— ZZ WiBy <l (13)

B; 171153

However, it is difficult to solve the optimization problem (13).
This is because the convexity of w].B; is unknown. To tackle this
problem, we replace wy.B; with meang,w;B;. The “mean” func-
tion calculates the average value of the input function with
respect to the subscript variable. Therefore, Eq. (11) turns to

. k
;1;13 <k— I}E}X (W] Bjj—meangw} Bu)> (14)

For simplicity, we define two concatenated vectors to consider

all clusters together, which are w=[wl,wl,... . wl,... . wl]" and
Bij)=[0,0, ...,B},...,0]", where 0 is a 1 x d zero vector, and d is
the dlmensmn of B. In Bjj,), only the (p—1)d+1 to pd-th elements
are nonzero and equal to Bj. Then, we have W'Bj,, = wiBf.

Combining with Eq. (14), the formulation (13) can be transformed
to

min nwu2
s
1—1
st. i=1,...,n,

Q= {p|p_ ar%rznax W Bu(p)),]eB}
pe

. k
min (— max (W' Bjj(p)—meangw B,J(q))> >1-¢;
pe jeB

que{lZ .k}

—z<zz

l*'l]eB

" (Bijip)—Bijig) <! (15)

In the following subsections, we will introduce how to solve
Eq. (15) by use of Cutting Plane Optimization and CCCP.

3.2.3. Cutting plane optimization

To simplify the notation, we define three functions: g(w,i,
Jj.p) = W'Bjjp—meangW'Bjq),  h(W,i,p) = k/(k—1)max; . pg(W,i,j,p)
and f(w,i) = min, ¢ o h(W,i,p).

For Eq. (15), there are n slack variables &;. To solve it efficiently,
we first derive the 1-slack form of Eq. (15) as in [47]. More
specifically, we introduce a single slack variable ¢>0 and
reformulate Eq. (15) into the following optimization problem:

mm 1uvwzJFCé
weé=0 2
st. i=1,...,n vce{0,1}"

fZC,f(Wl)> Zc, & vpge{l,2,... .k

1_1 1_1

=5 Z W By ~Biq) <! (16)

1_1_758,

It has been proved that the solution to Eq. (16) is identical to
Eq. (15) with é=(1/m)>F_;¢& in paper [47]. Although the
number of variables in Eq. (16) is greatly reduced, the number
of constrains is increased from n to 2". Our proposed algorithm
targets to find a small subset of constraints from the whole set of
constraints in Eq. (16) that ensures a sufficiently accurate solu-
tion. Specifically, we employ an adaptation of the cutting plane
algorithm [48] to solve the maximum margin clustering problem,
where we construct a nested sequence of successively tighter
relaxations of Eq. (16) as follows:

min leH2+Cé
w,=0 2

st. i=1,....,n VceV

—ZCJ(W > - Zc,

171 171

vp,qe{1,2,...,k}

-l< Z Z W "By —Big) <! a7

z—l]eB

Moreover, [47] proves theoretically that we can always find a
polynomially sized subset of constraints, with which the solution
of the relaxed problem fulfills all constraints from Eq. (16) up to a
precision of &, i.e.

vce {0,1}":

—qu(w )= Zc. —(&+e) (18)
i=1 17 1

That is, the remaining exponential number of constraints are
guaranteed to be violated by no more than ¢, without the need for
explicitly adding them to the optimization problem. Eq. (17)
starts with an empty constraint subset ¥ and it computes the
optimal solution subject to the constraints in ¥. After getting the
solution W, the most violated constraint can be computed as

1, iffwi<1
Ci= 0,

otherwise
The algorithm then adds the most violated constraint into the
subset . In this way, we construct a successive strengthening
approximation of the original problem (16) by a cutting plane that
cuts off the current optimal solution from the feasible set [48].
The algorithm stops when no constraint in (17) is violated by
more than e.

(19)

3.2.4. Optimization via the CCCP

In each iteration of the cutting plane algorithm, we need to
solve problem (17) to obtain the optimal classifying hyperplane
under the current working constraint set ¥. Although the objec-
tive function in (17) is convex, the constraints are not, which
makes Eq. (17) difficult to solve. However, the constraint can be
viewed as the sum of a convex function and a concave function.
Therefore, it is very suitable for our problem using the Con-
strained Concave-Convex Procedure (CCCP), which is just
designed to solve the optimization problems with a concave
convex objective function with concave convex constraints [49].
Given an initial point w'®, CCCP iteratively computes w**? from
Ww® by replacing f(W,i) with its first order Taylor expansions at
w®, and solving the resulting quadratic programming problem,
until convergence. In the following, we will show how to utilize
CCCP to solve Eq. (17).

To use CCCP, we should first calculate the gradient and the
first-order Taylor expansion of f(W,i) at w®. Since f(W,i) is a non-
smooth functions w.r.t. w, we replace its gradient with its
subgradient as follows:

af (W, i) |
ow w=w?
_ oW,  ohW.ip) IgW.ij.p) |
~ oh(W,i,p) ~ og(W,i,j,p) ow  lw=w"
(f) b(f) k J ¢
=2 i % 1 \Bim=1/k 3_ Bigp) (20)
peQ?® J €B; p=1

where

1 if p=arg min hw®,i,p)

) _ ©
aip = pe

0 otherwise
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and

poO —

i JjeB;

1 if j=arg max gWw",ij,p)
0 otherwise.

Given an initial point w®, the CCCP computes wt*+! from w' by
replacing f(w,i) in the constraint with its first-order Taylor
expansion at w/, i.e.

o S () : - of (Wi
ey =y + O T
.1 of (W,i)
=w' oW ‘w:w‘”
. k . .
+min (k T max(w B,J(p)—meanquBij(q))) —wT
05~ (50« % (B 1k S B
x> |9 i %7 | Bim—1/k >_ Biip
peQl JjeB; p=1
-1 of(W,i
:WT féww l)‘WzW(r) (21)

where

QY= {p|p_ ar(gllznax (W By V¥ jeB }
pe
By substituting the above first-order Taylor expansion (21) into
Eq. (17), we obtain the following quadratic programming (QP)
problem:
min 1nv~vu2+c5
Wweé=0 2

s.t. l:l

1.7 af(wz)
W 1Z1Cl | a0 > = IEC, é
vp,qe{l1,2,...,k}

-l= Z Z W " (Bjip)~Biig) <! (22)

i=1jeB;

n veeV

Following the CCCP, the obtained solution w* from this problem is
then used as w'+! and the iteration continues until convergence. Eq.
(22) can be solved by any state-of-the-art QP solvers, such as Mosek
[50]. However, there are many constraints. For simplicity, we try to
use the Wolfe dual of Eq. (22) to obtain the optimum solution.

First, we define four variables as follows: licylly =(1/n)
S i Cmim=1,..., Zm =1/ 37 _ Cridf (W,D) /W], _ 20,
m=1,...,|?[; bo=Yi_, i e 5,(1/)Bijip)—Bijig):p.q € {1, ... .k}
and Xg = [zm—bobo].

The Wolfe dual of Eq. (22) is

2
)203120,/320 (Z AmZm— Z Z opgbo + Z Z ﬁqu0>

p=1qg=1 p=1g=1
kd
+ Z AmllCmlly — Z Z(apq+ﬂpq)l
p=1q=1
|7|
st. Y Im<C (23)
m=1

To solve Eq. (23), we use the matlab quadratic programming
function “quadprog”. That is

min Q)= %XTHX—O— fTx
st. Agp'x<bgp x>0, (24)
where,

H =x}xo,bgp = C,

f=(=lclly, ...,—I\c‘q,‘lh,l,l..,l)T,
N——
K 2

Agp=(1,...,1,0,...,0)T,
[ N
7| 212

T
vakkvﬁnv s vﬁkk) .

After obtaining the solution for Eq. (24), the solution of Eq. (22)
can be obtained as follows:

X=(j.],...,)‘|ly,OC]],...,O(pq...

|| n

W« Z /L,m Z mi 6f(VY l) W — w0

k k

- Z Z(O‘Pq ﬂpq)bo

(25)

Based on the learned w, we can use Eq. (9) to obtain the
clusters Q; for the bag B;. The whole process of our solution is
summarized in Algorithm 1.

Algorithm 1. The proposed ML algorithm.

1: Input:
Data: bags {By,...,Bn}
Parameters: cluster number k, balance parameter I,
regularization constant C, CCCP solution precision &, cutting
plane solution precision ¢
Cutting Plane Iterations:
2: Obtain {B,J(p)} based on data.
3: Initialize W*, ¥ =0, t=0, and V1 <i<n, ¢;=0.
4: Solve Eq. (22) and add constraints into ¥ by (19).
5: while Eq. (18) is true with all the selected constraint ¢ do
6: t=t+1
7: CCCP Iterations:
8: Initialize w* =w'"!, s=0, AQ =102, Q"' =102
9: while AQ/Q° ! > ¢, do
10: Get the solution W'+ of problem (22) under ¥ by
n
e Z’I 1 ﬁf(W l)

n Cmi W w:W

(ts)

solving (24)

k k 11:
- Z Z(“Pq_ﬁpq)bo '

p=1g=1
(t§+1) QS+1_1(W“5+1') W([S+1)
e
s=s+1
12 AQ=Q'-Q’

13: end while
14: Ww'=wh

15:  Compute the most violated bags, i.e., cf, by
. { 1, if fov'iy<1

! 0, otherwise

and update the constraint set ¥ by ¥ =% uct
16: end while
17: Output:
The cluster assignment results for each bag Q;.

4. Experimental results

In this section, we present a set of experiments to validate the
effectiveness and the efficiency of the proposed method.
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4.1. Datasets

We use three real world traffic datasets: the CASIA dataset [5],
the NGSIM dataset [51] and the MIT dataset [7] as shown in Fig. 4.
The CASIA dataset contains two typical scenes including straight
road (S;) and crossroad (S,) in traffic scenes. The image size is
240 x 320. The NGSIM traffic scene dataset is almost 19 minutes
long with image size of 420 x 600. The MIT dataset contains
multiple video sequences about 92 minutes long from far-field
traffic scenes with image size of 480 x 720. There are myriads of
activities and interactions in the video data. All the three datasets
contain multiple motion patterns of vehicles and also include
illumination changes, occlusions, and different environmental
effects.

4.2. Implementation details
All the experiments are conducted with MATLAB R2008b on

a 2.66 GHz Intel Core(TM)2 Duo PC running Windows Vista
with 2.0 GB main memory. On the CASIA dataset [5], NGSIM

dataset [51], and MIT dataset [7], the scene images are experi-
mentally cut into 16 x 16 blocks, 24 x 32 blocks, 24 x 36 blocks,
respectively.

For ML, we set ¢=0.01, & =0.01, and the class imbalance
parameter [ is set by grid search from the grid [0.01,0.1,1:1:
5,10] and the parameter C is determined by searching from the
exponential grid 217313, w0 is randomly initialized. To avoid the
local minimal problem, for each experiment, we run the M“L
algorithm many times independently and report the final result
with the minimal Q. In our experiments, we run 15 times. Like
most of the existing clustering algorithms, it is difficult to
decide the number of clusters. For our problem, we can obtain
the probable number of clusters by use of the weight of each
Gaussian component. Instead, in this work, we set the number
of clusters manually based on the primary motion patterns in
traffic scenes.

A block may include noisy motion pattern in real applications.
To solve this problem, we can set a threshold th experimentally
and confirm ;= {p|p =arg max, . 12,..k(WpBj),W,B; > th,j e B;}.
In the experiments, we use the weight of Gaussian component

Fig. 4. Three datasets: (a) the CASIA dataset [5] (two scenes: S1 and S2), (b) the MIT dataset [7], and (c) the NGSIM dataset [51].

Fig. 5. (a) The scene image is cut into 8 x 8 blocks. (b) The values of b of the motion pattern with the highest weight in each block. Because the road is straight line,

the parameter a is 0. For display, we omit the values of c.

Fig. 6. Results of clustering blocks with similar motion patterns on CASIA dataset. (a) The six semantic regions in scene S1. (b) The eight semantic regions in scene S2.
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to remove the noisy motion patterns. In addition, the data may be
non-linearly separable, and it is better to map the data into a
higher dimensional feature space via some mapping ¢(Bjjp)) and
construct a separating hyperplane with maximum margin. This
yields a non-linear decision boundary in the original input space,
and Gaussian kernel can be adopted.

Since it is difficult to quantitatively evaluate the different
methods by a criteria, most of existing work [4,8,5,14] attempt to
demonstrate the effectiveness and efficiency of the methods by
displaying the learned motion patterns in the video sequence. In
this work, we adopt the trajectory clustering results to quantita-
tively compare with previous methods.

4.3. Motion pattern learning results

In Fig. 5, we show a simple example about the learned motion
patterns on CASIA dataset. As shown in Fig. 3, vehicles are tracked
from the entry point to the exit point, then the trajectories are fit to
get motion pattern for each block which the vehicle has passed. As
illustrated in Fig. 5, the scene image is cut into multi-blocks in
Fig. 5(a). In the experiments, R and C are both set to be 8 for the
320 x 240 image resolution. Because the road is straight line, the
parameter a is 0. For display, we omit the values of ¢, and just show
the values of b for all blocks. The values of b of motion pattern with
the highest weight in each block is displayed in Fig. 5(b). For blocks
which vehicle has not passed, their features are 0. The GMM
algorithm updates weight in an online way, which guarantees that
the primary distribution for each block can be learnt. Based on
Fig. 5(b), we can see that most of blocks have similar motion patterns.
By clustering the blocks, we can group motion patterns and obtain
the corresponding semantic regions. This results exhibit that our
approach is effective to learn primary motion patterns for each block.

4.4. Motion pattern clustering results and analysis

For our proposed method, the convergence speed is very fast,
and the computational time is less than 4 min on the three
datasets, respectively. Based on the clustering results, we can
confirm that our M*L method is very efficient and effective to

Table 1
The comparisons among three methods about average precision and average recall
in scene S1 on the CASIA dataset.

Method Average precision (%) Average recall (%)
I 91.6 94.5
11 [5] 96.5 98.6
1l (Ours) 99.1 99.3

group motion patterns and is suitable to solve the MIMCL
problem.

Results on CASIA dataset. Three trajectory clustering methods
are compared in our experiments on this dataset. For clarity,
they are denoted as I, Il and III. I: As mentioned in paper [4], the
modified Hausdorff distance is viewed as trajectory similarities
and use spectral clustering [52]. II: Cluster trajectories based on
their distributions [5]. Ill: our M*L method takes two steps to
obtain semantic regions. The first step is cutting the scene
image into multiple blocks and learning motion patterns for
each block by the GMM algorithm. For scene S1 and S2, the
scene image 320 x 240 is cut into 16 x 16 blocks. The second
step is clustering these motion patterns with M*L method.
Blocks having similar motion patterns are clustered to con-
struct semantic region. On CASIA dataset, some results about
block clustering are shown in Fig. 6(a) and (b). In scene S1 and
S2, there are six and eight semantic regions of vehicles,
respectively. Each of them represents a primary motion
pattern.

Based on the semantic regions and their corresponding motion
patterns, trajectories which fit the same semantic regions are
considered as a cluster. To make a quantitative comparison, the
statistical results of trajectory clustering in scene S1 are calcu-
lated. On this dataset, we give the details of average recall and
average precision of the six clusters. The average recall and

Table 2
The Precision and Recall of two different methods on MIT dataset. TP is true
positive, FN is false negative, FP is false positive.

Method Cluster TP FN FP Recall (%) Precision (%)

[ 1 72 12 9 85.7 88.9
2 152 39 29 79.6 84.0

3 247 44 51 84.9 829

4 464 137 153 77.2 75.2

5 51 13 9 79.7 85.0

6 62 19 10 76.5 86.1

7 112 11 17 91.1 86.8

8 77 18 13 81.1 85.6

9 142 34 27 80.7 84.0

10 25 8 17 75.8 59.5

Il (Our) 1 72 9 7 88.9 91.1
2 152 21 17 87.9 89.9

3 247 29 33 89.5 88.2

4 464 67 68 87.4 87.2

5 51 10 8 83.6 86.4

6 62 12 9 83.8 87.3

7 112 8 16 93.3 87.5

8 77 7 7 91.7 91.7

9 142 20 17 87.7 89.3

10 25 4 5 86.2 83.3

Fig. 7. Results of clustering blocks with similar motion patterns on MIT dataset including ten semantic regions.
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Fig. 8. Results of clustering blocks with similar motion patterns on NGSIM dataset with twelve semantic regions.

precision are 99.3% and 99.1%, respectively, which are better than
the result in [5] (98.6% and 96.5%). The detail is shown in Table 1.
Based on the results, we can confirm that our M*L method is
effective to cluster motion patterns.

Results on MIT dataset. Two trajectory clustering methods are
compared on this dataset. The first method is denoted as I, which
adopts the modified Hausdorff distance as trajectory similarities and
uses spectral clustering [52]. The second is our method. On this
dataset, the scene image 480 x 720 is cut into 24 x 36 blocks. By use
of our method, we obtain ten primary motion patterns as shown in
Fig. 7. Based on the results and motion patterns, trajectories are
grouped into ten clusters. To make a quantitative comparison,
the statistical results are illustrated in Table 2. For the 1404
trajectories, there are ten clusters. The ground truth annotation
of each cluster is labeled manually. There are 72, 152, 247, 464,
51, 62,112, 77, 142 and 25 trajectories for cluster 1, 2, 3, 4, 5, 6,
7, 8, 9 and 10 respectively. Recall and Precision are used to
measure the performance. These results show our method II
performs the better. The average recall and precision are 88.0%
and 88.2%, respectively, which are better than the results with
[5] (79.8% and 81.7%).

Results on NGSIM dataset. We adopt the same way as on MIT
dataset to compare our method with [4]. For our method, the
scene image 420 x 600 is cut into 24 x 32 blocks, and the twelve
primary motion patterns on this dataset are shown in Fig. 8. By
use of the results of clustering blocks with similar motion
patterns and their corresponding motion patterns, trajectories
which belong to similar motion patterns are considered as a
cluster. To make a quantitative comparison, the statistical results
of trajectory clustering are illustrated in Table 3. For the 1365
trajectories, there are twelve clusters. The ground truth anno-
tation of each cluster is labeled manually. There are 498, 294,
37,58, 121, 66, 76, 83, 47, 12, 38 and 35 trajectories for cluster
1,2,3,4,5,6,7,8,9, 10, 11 and 12 respectively. Recall and
Precision are used to measure the performance. Compared with
the method I, we can confirm that our method is efficient to
cluster motion patterns, and obtains much better perfor-
mances. On this dataset, the average recall and precision are
88.5% and 87.5%, respectively, which are better than the
performance of [5] (78.7% and 80.2%).

As can be seen in Figs. 6-8, the proposed method is able to
detect multiple semantic motion patterns in a completely
unsupervised manner. In these crowded traffic scenes, multiple
co-occurring patterns happen in the same region. We can
see that our algorithm successfully groups blocks with
multiple clusters corresponding to multiple semantical motion
patterns.

Table 3
The Precision and Recall of two different methods on NGSIM dataset. TP is true
positive, FN is false negative, FP is false positive.

Method Cluster TP FN FP Recall (%) Precision (%)

I 1 498 101 93 83.1 84.3
2 294 79 81 78.8 78.4

3 37 11 9 771 80.4

4 58 13 15 81.7 79.5

5 121 21 25 85.2 82.9

6 66 18 21 78.6 75.9

7 76 12 19 86.4 80.0

8 83 9 7 90.2 92.2

9 47 14 15 771 75.8

10 12 6 5 66.7 70.6

11 38 12 7 76.0 84.4

12 35 10 9 77.8 79.6

1T (Our) 1 498 17 9 96.7 98.2
2 294 11 16 96.4 94.8

3 37 8 5 82.2 88.1

4 58 6 9 90.6 86.6

5 121 13 18 90.3 87.1

6 66 7 9 90.4 88.0

7 76 9 6 89.4 92.7

8 83 5 4 94.3 95.4

9 47 15 13 75.8 78.3

10 12 1 4 92.3 75.0

11 38 8 6 82.6 86.4

12 35 8 9 81.4 79.6

4.5. Semantic region results and analysis

Based on the clustering blocks and their corresponding motion
patterns, trajectories which fit the same regions are considered as
a cluster. For each cluster of trajectories, the methods in [5] are
used to learn the corresponding semantic scene region. The path
region is obtained by thresholding the density distribution. The
learned semantic scene regions on three datasets are shown in
Figs. 9-11. The red lines are the primary trajectories, which
represent the primary motion patterns. The red arrows are the
moving directions of objects, and the regions denoted with color
are the learned paths of vehicle.

The results in Figs. 9-11 show the primary motion patterns
happening on the three datasets. Let us take the results in Fig. 11 as
an example. The scene is a crossroad, and contains multiple complex
motion patterns. The learned motion patterns are time continuous
and their distributions in the scene image are consistent with the
actual paths. Therefore, they are very meaningful and represent the
activities of objects at a higher semantic level. The similar results on
this dataset are shown in [8,14], which adopted multi-scale analysis
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Fig. 9. The fine results of semantic scene regions in scene S1 and S2. The red arrows are the moving directions of objects, and the red curves are the primary trajectories.
(For interpretation of the references to color in this figure caption, the reader is referred to the web version of this Article.)

Fig. 10. The fine results of semantic scene regions on MIT dataset. The red arrows are the moving directions of objects, and the red curves are the primary trajectories. (For
interpretation of the references to color in this figure caption, the reader is referred to the web version of this Article.)

Fig. 11. The fine results of semantic scene regions on NGSIM dataset. The red arrows are the moving directions of objects, and the red curves are the primary trajectories.
(For interpretation of the references to color in this figure caption, the reader is referred to the web version of this Article.)

and statistical representation of motion patterns, respectively.
Because we use the trajectories as the description, it helps to make
the learned motion pattern more continuous. Compared with [8,14],

we can confirm that our method obtains comparable results, and for
some motion patterns, such as the horizontal motion patterns that
vehicles move through west-east road unhindered, our results are
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much finer and more meaningful. Based on the learned information,
we can have a variety of surveillance applications, for example,
detect abnormal activities, improve object detection and infer the
motion of objects in the scenes.

5. Conclusions

We have formulated motion pattern grouping as a Multi-
instance Multi-cluster Learning (MIMCL) problem for video scene
modeling. To solve this problem, a novel unsupervised clustering
approach called M“L is proposed. An efficient optimization solu-
tion is adopted by use of combination of Constrained Concave-
Convex Procedure (CCCP) and the Cutting Plane method. Our ML
is generic for MIMCL problem, which can also be used for image
clustering problem (image with multiple semantical concepts). In
the future, we will study how to guarantee the convergence of
M“L as the proofs in [47]. We will also investigate how to
automatically decide the number of cluster and design an effec-
tive evaluation method.
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